Perfect Fractional Matchings in $k$-Out Hypergraphs
نویسندگان
چکیده
منابع مشابه
Perfect Fractional Matchings in $k$-Out Hypergraphs
Extending the notion of (random) k-out graphs, we consider when the k-out hypergraph is likely to have a perfect fractional matching. In particular, we show that for each r there is a k = k(r) such that the k-out r-uniform hypergraph on n vertices has a perfect fractional matching with high probability (i.e., with probability tending to 1 as n → ∞) and prove an analogous result for r-uniform r-...
متن کاملNearly perfect matchings in regular simple hypergraphs
For every fixed k ≥ 3 there exists a constant ck with the following property. Let H be a kuniform, D-regular hypergraph on N vertices, in which no two edges contain more than one common vertex. If k > 3 then H contains a matching covering all vertices but at most ckND. If k = 3, then H contains a matching covering all vertices but at most c3ND lnD. This improves previous estimates and implies, ...
متن کاملPerfect matchings in random uniform hypergraphs
In the random k-uniform hypergraph Hk(n, p) on a vertex set V of size n, each subset of size k of V independently belongs to it with probability p. Motivated by a theorem of Erdős and Rényi [6] regarding when a random graph G(n, p) = H2(n, p) has a perfect matching, Schmidt and Shamir [14] essentially conjectured the following. Conjecture Let k|n for fixed k ≥ 3, and the expected degree d(n, p)...
متن کاملFinding Perfect Matchings in Bipartite Hypergraphs
Haxell’s condition [Hax95] is a natural hypergraph analog of Hall’s condition, which is a wellknown necessary and sufficient condition for a bipartite graph to admit a perfect matching. That is, when Haxell’s condition holds it forces the existence of a perfect matching in the bipartite hypergraph. Unlike in graphs, however, there is no known polynomial time algorithm to find the hypergraph per...
متن کاملPerfect matchings in 4-uniform hypergraphs
A perfect matching in a 4-uniform hypergraph is a subset of b4 c disjoint edges. We prove that if H is a sufficiently large 4-uniform hypergraph on n = 4k vertices such that every vertex belongs to more than ( n−1 3 ) − ( 3n/4 3 ) edges then H contains a perfect matching. This bound is tight and settles a conjecture of Hán, Person and Schacht.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2017
ISSN: 1077-8926
DOI: 10.37236/6890